[image: /Users/jonathan/Desktop/WIN14_Jan_Asus_03.png]Last Update: 5 August 2018RS5 Validation Guide

Summary: This document provides implementation steps to validate the dynamic spreading of host-based processing for network workloads.

Table of Contents
Overview	3
Description	3
Required Hardware	3
Required Software	3
Test Design	4
Troubleshooting and Feedback	5
Prerequisites	5
Install and Configure the Required Systems	5
Configure Sender Firewall Rule	5
Configure Receiver Firewall Rule	5
Test Activities	5
Activities	6
Activity 1: Setup the Receiving Host and Virtual Machine	6
Task 1.1 Setup the Host	6
Task 1.2 Setup the Virtual Machine	7
Example Receiving System Setup	7
Activity 2: Baseline with Static vRSS	8
Task 2.1 Configure Static vRSS on the Virtual Network Adapter	8
Task 2.2: Initiate low-traffic to the Virtual Machine	9
Task 2.3: Ramp throughput on the Traffic Receiver (SUT)	12
Activity 3: Validate the Dynamic Algorithm	15
Task 3.1: Initiate low-traffic to the Virtual Machine	15
Task 3.2: Low-Throughput Switch to Dynamic	16
Task 3.3: Ramp throughput on the Traffic Receiver (SUT)	19
Activity 4: Quickly Maximize Throughput	21
Task 4.1 Park Receive Queues	21
Task 4.2 Immediate Maximum Throughput	23

[bookmark: _Toc521265204]Overview
Software defined data centers require optimal host-based processing to provide top-class performance to tenant workloads. In Windows Server 2019, Hyper-V continues to challenge performance boundaries by dynamically spreading processing for network workloads across CPU cores for synthetic (through the vSwitch) network workloads.
In this validation guide, we will provide steps to observe and validate the dynamic spreading of processing for network workloads.
[bookmark: _Toc521265205]Description
Cloud Service Providers are continually looking to identify methods to increase density on their hyper-converged or disaggregated compute workloads and network throughput is increasing to meet such demand. At the same time, tenant throughput is also continuing to climb. This high density, high throughput workload must traverse the virtual switch in to apply packet encapsulations, ACLS, SDN virtual network policies, and more. All of this leads to higher processing burdens on the host.
In the past, Virtual Machine Queue and Virtual Machine Multi-Queues enabled hardware-based packet interrupt processing. This enabled much higher throughput to individual VMs as network throughputs first reached the 10GbE mark and beyond. Unfortunately, the planning, baselining, tuning, and monitoring required for success became a large undertaking; often more than the IT Administrator intended to expend.
To address this, Windows Server 2019 improves these optimizations by dynamically spreading the processing for network workloads as required. This removes the configuration burden for administrators and ensures peak efficiency.
· Self-Tuning! Expands or coalesces across logical processors as necessary
· Dynamically reassignes queues to logical processors to maximize processing efficiency of network traffic
[bookmark: _Toc521265206]Required Hardware
	Hardware
	Description

	Physical host system with virtualization capability and at least a 10 GbE Network adapter with available Virtual Machine Queues
	This system will host a virtual machine that receives network traffic. Virtual Machine Queue (VMQ) is a required feature on the physical network adapter. To see the benefit of this feature, at least a 10 GbE adapter is also required.

	Additional host system
	This system will be used to send traffic to the virtual machine. There are no specific requirements for this adapter (virtualization is not required) however the network adapter must be capable of sending the required level of network throughput (e.g. 10 GbE or greater is required)

[bookmark: _Toc521265207]Required Software
	Software
	Description

	Windows Server 2019
	Latest Insider or EEAP build

	Any network throughput generator
	NTTTCP is used in this example but CTSTraffic or another traffic generator could also be used

[bookmark: _Toc513043199][bookmark: _Toc521265208]Test Design
To test this feature, two physical systems are required:
Sender is a separate physical system. The Receiver or System Under Test (SUT) is a Windows Server 2019 virtual machine with a vmNIC.

Sender
192.168.51.11
Hyper-V Host
Receiver
Virtual Machine
192.168.51.31

[bookmark: _Toc521265209]Troubleshooting and Feedback
If you encounter any challenges during your validation, please submit an issue on GitHub with the High Performance Networking tag.
[bookmark: _Toc521265210]Prerequisites
[bookmark: _Toc521265211]Install and Configure the Required Systems
· Hyper-V Host System
· Windows Server 2019 must be installed on the host
· Hyper-V must be installed, and a Virtual Switch created. If the adapter(s) are teamed it must use Switch Embedded Teaming (SET). The use of LBFO with this feature is not supported.
· Create one Windows Server 2019 Virtual Machine and attach the virtual switch

· Virtual Machine (Receiver)
· NTTTCP should be downloaded and extracted to a folder of your choosing
· In this article, the following IP address is assigned to this system: 192.168.51.31

· Traffic Sender: This should be a separate system that will act as the sender for the network traffic we’re generating
· NTTTCP should be downloaded and extracted to a folder of your choosing
· In this article, the following IP address is assigned to this system: 192.168.51.11
[bookmark: _Toc513043207][bookmark: _Toc521265212]Configure Sender Firewall Rule
NTTTCP will be blocked by the Windows (or other) firewall if a rule is not in-place to allow the traffic. Since NTTTCP can use many varied ports, you should create a firewall rule that allows the program to run.
For example, if NTTTCP was extracted to c:\vmSwitchTest, you could use this command to create an exception:
New-NetFirewallRule -DisplayName 'Outbound-NTTCP' -Name 'Outbound-NTTCP' `
-Program 'c:\vmSwitchTest\ntttcp.exe' `
-Direction Outbound -Action Allow
Note: The command above is a single command that stretches to multiple lines due to the size of the page.
[bookmark: _Toc513043208][bookmark: _Toc521265213]Configure Receiver Firewall Rule
NTTTCP will be blocked by the Windows (or other) firewall if a rule is not in-place to allow the traffic. Since NTTTCP can use different ports, you should create a firewall rule that allows the program to run.
For example, if NTTTCP was extracted to c:\vmSwitchTest, you could use this command to create an exception:
New-NetFirewallRule -DisplayName 'Inbound-NTTCP' -Name 'Inbound-NTTCP' `
-Program 'c:\vmSwitchTest\ntttcp.exe' `
-Direction Inbound -Action Allow
Note: The command above is a single command that stretches to multiple lines due to the size of the page.
[bookmark: _Toc521265214]Test Activities
Below are the activities that we will cover in this guide:
1. Setup the Receiving Host and Virtual Machine – Open the necessary perf counters, etc.
2. Baseline with Static vRSS – First test static vRSS to create a baseline for comparison
3. Validate the Dynamic Algorithm – Observe the dynamic algorithm in action
4. Quickly Maximize Throughput – Maximize throughput as quickly as possible
[bookmark: _Toc521265215]Activities
[bookmark: _Toc521265216]Activity 1: Setup the Receiving Host and Virtual Machine
In this activity, we will open and configure the necessary performance counters on the host and ready the virtual machine to receive traffic.
[bookmark: _Toc521265217]Task 1.1 Setup the Host
1) On the host system where the receiving VM resides, open two performance monitor windows
[image:]
2) In the first performance monitor window, Click the green plus sign to add counters
3) Add the counters: Hyper-V Virtual Switch Processor – Packets from External/Sec – All Instances

Note: You may also need to modify additional properties to best display the necessary data. In this example we have modified the following properties
	[image:]

[image:]

4) In the second performance monitor window, Click the green plus sign to add counters
5) Add the counters: Hyper-V Virtual Network Adapter VRSS – ReceiveProcessor – VM01_Network Adapter_Entry…

Note: The available entries on your system may differ from what you see in this demo as they are hardware and software configuration dependent. E.g. if your SUT is not named VM01, but VM02, you would need to add the counters specific to VM02.

Note: You may also need to modify additional properties to best display the necessary data. In this example we have modified the following properties
[image:]

[image:]

6) Next, open an elevated PowerShell prompt on the host machine
7) Finally, open a console connection to the virtual machine (System under Test or SUT)
[bookmark: _Toc521265218]Task 1.2 Setup the Virtual Machine
1) In the console Windows to the System Under Test, open 2 elevated PowerShell windows
2) Next open Task Manager
[bookmark: _Toc521265219]Example Receiving System Setup
At the end of Task 1.1 and 1.2, your system should look similar to this. As previously noted, the exact views may differ as they are hardware and software configuration dependent. This may include Host Processor numbers, VM names, etc.
[bookmark: _Activity_1:_Minimum][image:]
Observe the performance counters in the bottom left-hand corner of the picture above. The receive queues are “parked” on specific cores which is to say that they have been pre-allocated and assigned to process their data on a particular CPU while they are waiting for receive traffic (they are not receiving any traffic as evidenced by the performance counter in the top-left of the screenshot).
[bookmark: _Toc521265220]Activity 2: Baseline with Static vRSS
Static vRSS is an existing option available in Windows Server 2016 and prior (it is still available on Windows Server 2019). In this example, we will first set the system in Static vRSS mode, then test the system for throughput and scalability. This will give us a baseline and allow us to observe what occurs in the virtual machine when the host’s cores are overburdened.
With this configuration you should see:
· Low-throughput systems: The host system pre-allocates VMQs across multiple processors. Once established, this correlation of queues to CPUs (indirection table) does not change. The result is an inefficient use of resources as the system utilizes more processors than required to process the incoming network data.

· High-throughput systems: Despite a specific processor being unable to keep up with the network data being processed on that core, it cannot move the workload to an under-utilized or available processor – correlation of queues to CPUs (indirection table) cannot change in this mode. As a result, the throughput to the virtual machine cannot be maintained.
[bookmark: _Toc521265221]Task 2.1 Configure Static vRSS on the Virtual Network Adapter
In this task we’ll configure the individual virtual network adapter to use static vRSS.
From the Hyper-V host, at an elevated PowerShell prompt, run the following command:
Set-VMNetworkAdapter -VMName VM01 -VrssQueueSchedulingMode StaticVrss -VmmqEnabled $false[image:]
Note: VM01 is the name of the virtual machine from the Hyper-V console
Next run the following command
Get-VMNetworkAdapter -VMName VM01 | Select *VRSS*, *VMMQ*
Verify that the following settings are configured as show:
VrssEnabled : True
VrssQueueSchedulingMode : StaticVrss
VmmqEnabled : False
[image:]
Note: It may take a few moments for the values to change as intended. For example, you may find that the settings report:
VrssEnabled: False
VrssEnabledRequested: True
If you find that vRSSEnabled remains False despite vRSSEnabledRequested at True, run the Get-VMNetworkAdapter command above again. If the issue persists, disconnect and reconnect the vmNIC from the virtual machine.
[bookmark: _Toc521265222]Task 2.2: Initiate low-traffic to the Virtual Machine
In this task, we’ll initiate a low amount of traffic to the receiving VM.
1) On the Sender, open a PowerShell window and navigate to the folder that has NTTTCP.
2) Next, run NTTTCP to begin sending traffic to the SUT. The goal is to limit the traffic to what can be processed by 1 or 2 processor cores. For example, on our test system
.\NTTTCP -s -a 8 -m 64,*,192.168.51.31 -t 9999 -thr 10000
In the example above:
-s defines this is a sender system
-a sets the outstanding IOs to 8
-m 64 thread
-t 9999 time in seconds to send traffic
-thr 10000 Throttle the send data with throughput specified in KB/s for each thread

3) On the Receiver (Guest VM), open a PowerShell window and navigate to the folder that has NTTTCP.
4) Next, run NTTTCP to begin receiving traffic on the SUT. The goal is to limit the traffic to what can be processed by 1 or 2 processor cores. For example, on our test system
.\NTTTCP -r -a 8 -m 64,*,192.168.51.31 -t 9999
In the example above:
-r defines this is a receiver system
-a sets the outstanding IOs to 8
-m 64 thread
-t 9999 time in seconds to send traffic
Note: The goal of this test is to limit the network traffic such that the system could process the network data on 1-2 cores. You may need to change throttling (thr parameter on the sender) to manipulate this.
In the SUT (Guest VM), wait until the NTTTCP command changes to Network Activity Progressing… Once this occurs, the receive traffic should increase as shown in the screenshot below.
[image:]
As you can see above, the VM is receiving 5.3 Gbps of network throughput. This traffic is being processed by multiple processors (shown below) despite the cores appearing to be able to process more data.
[image:]
The receive queue assignments (indirection table) have not changed. The receive queues remain spread (in the picture below, 2 queues per CPU, for a total of 8 CPUs and across multiple CPUs despite needing only 1 – 2 cores to process the existing workload. This is an inefficient use of processing power as there is a tax paid to distribute packets to another processor.
[image:]
Note on Task Manager: The natural inclination is the open task manager to view the network processing per CPU. Task manager has several deficiencies in these scenarios. For example, task manager cannot distinguish between receive and send traffic nor can it highlight the Base VMQ in this scenario.
We recommend that you rely on the performance counters for these tests as this can lead to inaccurate conclusions of the data.
[bookmark: _Toc521265223]Task 2.3: Ramp throughput on the Traffic Receiver (SUT)
In this task, we’ll now increase the traffic on the receiving VM.
1) On the Sender, open a PowerShell window and navigate to the folder that has NTTTCP.
2) Next, run NTTTCP to begin sending traffic to the SUT. The goal is to increase the traffic to the max for the VM with the existing configuration. For example, on our test system
.\NTTTCP -s -a 8 -m 64,*,192.168.51.31 -t 9999
In the example above:
-s defines this is a sender system
-a sets the outstanding IOs to 8
-m 64 thread
-t 9999 time in seconds to send traffic
-thr 10000 this parameter is removed to remove the throttling

3) On the Receiver (Guest VM), open a PowerShell window and navigate to the folder that has NTTTCP.
4) Next, run NTTTCP to begin receiving traffic on the SUT. The goal is to limit the traffic to what can be processed by 1 or 2 processor cores. For example, on our test system
.\NTTTCP -r -a 8 -m 64,*,192.168.51.31 -t 9999
In the example above:
-r defines this is a receiver system
-a sets the outstanding IOs to 8
-m 64 thread
-t 9999 time in seconds to send traffic
In the SUT (Guest VM), wait until the NTTTCP command changes to Network Activity Progressing… Once this occurs, the receive traffic should increase as shown in the screenshot below.
[image:]
As you can see above, the VM is receiving 14.2 Gbps of network throughput. This traffic is being processed by same processors as before. Some of the cores have peaked and this is limiting our throughput to the virtual machine despite the NICs being capable of higher throughputs (these are 40 Gbps NICs in our scenario).
[image:]
Next, run the following command on the elevated PowerShell window on the host to determine the MAC Address of the vmNIC. In the screenshot below, the vmNIC’s MAC Address is 00155D519A00.
[image:]
Now run the following command to determine the BaseVMQ for the vmNIC. Correlate the MAC Address from the previous command with the entries displayed here. Note the entry for Processor. In this example, the Processor for the BaseVMQ at MAC Address 00-15-5D-51-9A-00 is Processor 17.
[image:]
As you can see in the picture below, Processor 17 (green bar to the far right) is not processing many packets itself. As the processor for the BaseVMQ, its job is to receive the packets and distribute them to other processors for processing.
[image:]
By looking at Task Manager on the host, you can see that processor 17 is completely consumed. This limits the throughput to the virtual machine because the host is using one of its processors to distribute packets rather than process packets itself. In addition, the other cores all have available processing cycles that are unused.

[image:]
Next let’s see how the dynamic algorithm introduced in Windows Server 2019 help solve some of these problems.
[bookmark: _Toc521265224]Activity 3: Validate the Dynamic Algorithm
[bookmark: _Toc521265225]Task 3.1: Initiate low-traffic to the Virtual Machine
In this task, well reset the traffic flow to match that of Task 2.2.
On the Guest VM, stop the second transfer as shown below
[image:]

Note: The transfer and throughput return to approximately 5.5 Gbps
[bookmark: _Toc521265226]Task 3.2: Switch Low-Throughput system to Dynamic Algorithm
In this task, we’ll switch to the dynamic algorithm and observe how it coalesces the processing of network data to as few processors as required.
Prior to beginning this task, note the existing setup of the performance counters. With 5.5 Gbps still coming into the VM, the packets are still being received on several processors. This is because the StaticVRSS algorithm has placed the Queues and will not move them once they are set.
[image:]
In the elevated PowerShell prompt on the host, run the following command to switch to the dynamic algorithm.
Set-VMNetworkAdapter -VMName VM01 -VrssQueueSchedulingMode Dynamic -VmmqEnabled $false
[image:]
In this picture below, you can see that all receive packets are now being processed on Processor 17, the BaseVMQ we identified earlier.

[image:]
Each receive queue is now processing its data on CPU 17. This is far more efficient that engaging multiple CPUs.
[image:]
Most importantly, the throughput to the VM is not affected. The virtual machine data is stable while the host processing has been optimized.
[image:]
Note: It may take some time to balance the work load as this depends on a few factors. For example, the specific NTTTCP command used or the number of queue moves in the recent past may affect the speed at which queue moves occur. If you don’t see the expected result as shown above,
· Wait approximately 60 seconds (this may take a bit more or less time). The delay is to prevent “thrashing” whereby a system would be moving queues around to frequently.
· Alternatively, review the exact NTTTCP command used; it may need to be tweaked for your specific NIC throughput or system (CPU’s)
[bookmark: _Toc521265227]Task 3.3: Ramp throughput on the Traffic Receiver (SUT)
In this task, we’ll now increase the traffic on the receiving VM. The goal of this is to see the dynamic algorithm automatically expand to additional processors as needed while autotuning the queues involved to maximize processing efficiency.
1) On the Sender, open a PowerShell window and navigate to the folder that has NTTTCP.
2) Next, run NTTTCP to begin sending traffic to the SUT. The goal is to increase the traffic to the max for the VM with the existing configuration. For example, on our test system
.\NTTTCP -s -a 8 -m 64,*,192.168.51.31 -t 9999 -thr 10000
In the example above:
-s defines this is a sender system
-a sets the outstanding IOs to 8
-m 64 thread
-t 9999 time in seconds to send traffic
-thr 10000 throttle the send data with throughput specified in KB/s for each thread

3) On the Receiver (Guest VM), open a PowerShell window and navigate to the folder that has NTTTCP.
4) Next, run NTTTCP to begin receiving traffic on the SUT. The goal is to limit the traffic to what can be processed by 1 or 2 processor cores. For example, on our test system
.\NTTTCP -r -a 8 -m 64,*,192.168.51.31 -t 9999
In the example above:
-r defines this is a receiver system
-a sets the outstanding IOs to 8
-m 64 thread
-t 9999 time in seconds to send traffic
In the SUT (Guest VM), wait until the NTTTCP command changes to Network Activity Progressing… Once this occurs, the receive traffic should increase as shown in the screenshot below. Note the throughput has increased to 10.3 Gbps
[image:]
Two additional receive queues have been engaged in addition to the BaseVMQ.
[image:]
The three receive queues have spread to three CPUs to process the data (the height of the bar below indicates the CPU engaged by the receive queues).
[image:]
Overtime, you may see the dynamic algorithm continue to balance the queues to continually maximize efficiency
[image:]
[bookmark: _Toc521265228]Activity 4: Quickly Maximize Throughput
In this activity we will observe how the receiving system can immediately expand to maximum throughput. As you can imagine if, all queues were sitting on a single CPU, they could not be engaged simultaneously – 1 to 2 receive queues would typically consume an entire processor.
[bookmark: _Toc521265229]Task 4.1 Park Receive Queues
1) Cancel the NTTTCP workloads
[image:]

2) Note that the receive queues are no longer receiving network traffic
[image:]

3) As a result, the receive queues “park” on separate CPUs by the dynamic algorithm. This allows the network traffic to ramp very quickly in the event of a throughput spike.

In the example below, two receive queues are parked per CPU core.
[image:]
[bookmark: _Toc521265230]Task 4.2 Immediate Maximum Throughput
In this task, we’ll now maximize the traffic to an idle receiving VM. The goal of this is to observe the benefit of the parked receive queues and how the system quickly reaches maximum throughput. They dynamic algorithm automatically expands or coalesces the CPUs as necessary to reach the maximum throughput while ensuring maximum host processing efficiency.
1) On the Sender, open a PowerShell window and navigate to the folder that has NTTTCP.
2) Next, run NTTTCP to begin sending traffic to the SUT. The goal is to increase the traffic to the max for the VM with the existing configuration. For example, on our test system
.\NTTTCP -s -a 8 -m 64,*,192.168.51.31 -t 9999
In the example above:
-s defines this is a sender system
-a sets the outstanding IOs to 8
-m 64 thread
-t 9999 time in seconds to send traffic

3) On the Receiver (Guest VM), open a PowerShell window and navigate to the folder that has NTTTCP.
4) Next, run NTTTCP to begin receiving traffic on the SUT. The goal is to limit the traffic to what can be processed by 1 or 2 processor cores. For example, on our test system
.\NTTTCP -r -a 8 -m 64,*,192.168.51.31 -t 9999
In the example above:
-r defines this is a receiver system
-a sets the outstanding IOs to 8
-m 64 thread
-t 9999 time in seconds to send traffic
In the SUT (Guest VM), wait until the NTTTCP command changes to Network Activity Progressing… Once this occurs, the receive traffic should increase as shown in the screenshot below. Note the throughput has increased to 21.1 Gbps
[image:]
As a result of the network throughput, you might see that the performance counters are not updated immediately. Wait a few minutes and you should see the performance counters return.
[image:]
The important aspect to note is that the network throughput to the virtual machine immediately expands to the maximum.
Note: Depending on the speed of your NICs, you may not be able to reach maximum throughput for that device. For example, the test system used with this guide, have 40 Gbps NICs however the virtual machine can obtain no more than ~20 Gbps. This is because we disabled VMMQ earlier in this guide.
VMMQ is a hardware offload that allows the NIC to place the receive packets directly onto the appropriate processor. With VRSS alone, the BaseVMQ consumes an entire processor and must distribute the receive packets to the appropriate processor. With VMMQ, this distribution of packets is no longer required, and an additional processor is available for receiving packets.
[bookmark: _GoBack]In the future, we will expand this guide to include testing of VMMQ with the dynamic algorithm.

image1.png

image2.png
PS C:\vmswitchtest>

image3.png
Performance Monitor Properties.

General Source Data Graph Appearance
View: Saol stie
T | o o
e
-
[Jvertcal grid ical scale numbers.
[JHorizontal grid Time axis labels

image4.png
Performance Monitor Properties.

General Souce Data Graph Appearance.

[valye bar [Toobar

Reportand histogram data
©peft Oimum Omerage

Ogurrent OMasimum

Graph elements

image5.png
Performance Monitor Properties.

General Souce Data | Graph | Appearance

View: Scrol style.
T | o o
.

CPU Core Processing Packets

image6.png
Performance Monitor Properties.

General Souce Data Graph Appearance.

Display lements

[Ve bar [Tookar
Reportand histogram data
@ et O Miimum O hverage
Ocurent OMasimum

Sample autmatcaly Graph elements

Sample every

Duraton:

image7.png
File Action View Window Help

POTROS12

& VMO1 on TK5-3W
Fle Action Media View

OXc]J nofy

Virtual Machine Connection

CPU Core

& 15000,

g

2 1000

£ 500

o

Show Color Scale
o — 1.0
~ — 10
~ 10
~ — 10
~ — 10
~ 10
~ 10
v 1.0
| — 10

Counter

Packets from External/sec Root VP9
Packets from External/sec Root VP 10
Packets from External/sec Root VP 11
Packets from External/sec Root VP 12
Packets from External/sec Root VP 13
Packets from External/sec Root VP 14
Packets from External/sec Root VP 15
Packets from External/sec _ Root VP 16
Packets from External/sec Root VP 17

Instance .. Object

Hyper-V Virtual Switch Processor \\TKS:
Hyper-V Virtual Switch Processor \\TKS
Hyper-V Virtual Switch Processor ~ \\TK:
Hyper-V Virtual Switch Processor ~ \\TK:
Hyper-V Virtual Switch Processor \\TKS:
Hyper-V Virtual Switch Processor \\TKS
Hyper-V Virtual Switch Processor ~ \\TK:
Hyper-V Virtual Switch Processor \\TK:
- Hyper-V Virtual Switch Processor \\TK5-3WPO7R0512

Computer
WPOTROS12

File Action View Window Help

o
PS C:\vmswitchtest>

PS C:\vmswitchtest>

Status: Running

9 Task Manager - o x
File Options View

Processes Performance Users Details Services

© Y e Ethernet wicrosoft Hyper-v Netwo

Memory
1.9/4.0 GB (48%)

Ethernet
S: 0Kbps R: 0 Kbps

Ethernet
Ethernet
192.168.51.31
. feB0:dig3e2da:
0 Kbps
< >
Fewer details | (8) Open Resource Monitor

e nm E =
Receive Queues

g 2
< s
x H IJ
& o
Show Color Scale Counter Instance Object
v 10 ReceiveProcessor VMOT Network Adapter Entry_0_ CEDS10B Hyper-V Virtus! Network Adspter VRSS
4 10 ReceiveProcessor VMOT_Network Adspter Entry_1_CEDS1086-. — Hyper-V Virtual Network Adapter VRSS
4 10 ReceiveProcessor VMOT_Network Adspter Entry 2 CEDS106-.. - Hyper-V Virtual Network Adapter VRSS
4 10 ReceiveProcessor VMOT_Network Adspter Entry_3_CBDS10BG-... - Hyper-V Virtus Network Adspter VRS
4 10 ReceveProcessor VMOT_Network Adspter Entry 4 CBDS10BG-... - Hyper-V Virtus Network Adspter VRS
4 s 10 ReceiveProcessor VMOT_Network Adspter Entry 5_CEDS106-.. — Hyper-V Virtual Network Adapter VRSS
4 10 ReceveProcessor VMOT_Network Adspter Entry 5 CBDS10BG-... - Hyper-V Virtus Network Adspter VRSS
I 10 ReceiveProcessor VMOT_Network Adspter Entry_7_CBDS10BG-.. - Hyper-V Virtusl Network Adspter VRSS
< >

o
PS C:\vmswitchtest>

image8.png
VMe1 StaticVrss

PS C:\vmswitchtest>

image9.png
PS C:\vmswitchtest> Get-VMNetworkAdapter -VIMName VM1 | Select *VRSS*, *VMMQ*

VrssEnabled : True
VrssEnabledRequested : True
VrssMaxQueuePairs : 8
VrssMaxQueuePairsRequested : 16
VrssMinQueuePairs i1
VrssMinQueuePairsRequested i1
VrssQueueSchedulingMode : StaticVrss
VrssQueueSchedulingModeRequested : StaticVrss
VrssExcludePrimaryProcessor : False
VrssExcludePrimaryProcessorRequested : False
VrssIndependentHostSpreading : False
VrssIndependentHostSpreadingRequested : False
VrssVmbusChannelAffinityPolicy : Strong
VrssVmbusChannelAffinityPolicyRequested : Strong
VmmgQueuePairs : 8
VmmgQueuePairsRequested : 16
VmmgEnabled : False
VmmgEnabledRequested : False

image10.png
Fle Action Media View Help
mo Ry B

51048
51034
51002
51035
51006

51005
51025
51030
etwork activity progressing.

PS C:\vmswitchtest>

Processes Performance Users Details Services

O cpu

Memory
2.0/4.0 GB (50%)

Ethernet
S: 9.9 Mbps R: 5.3 Gbps.

9.9 Mbps

5.3 Gbps
<

Fewer details | () Open Resource Monitor

% 260GH: Ethernet wicrosoft Hyper-v Netwe

Ethernet
Ethernet
192.168.51.31
fe80:d49%:d2da

image11.png
® File Action View Window Help
e amE=Hm

CPU Core
20000

§ 15000

£

£ 1000

E s

Show Color Scale Counter Instance P.. Object Computer

~ — 10 Packets from Extermal/sec Root VP9 Hyper-V Virtus Switch Processor \\TKS-3WPOTRO12

~ — 10 Packets from External/sec Root VP 10 Hyper-V Virtul Switch Processor \\TKS-3WPOTRO12

~ 10 Packets from External/sec Root VP 11 Hyper-V Virtul Switch Processor \\TKS-3WPOTRO12

~ — 10 Packetsfrom External/sec Root VP 12 Hyper-V Virtul Switch Processor \\TKS-3WPOTRO12

~ — 10 Packets from External/sec Root VP 13 Hyper-V Virtul Switch Processor \\TKS-3WPOTRO12

~ — 10 Packetsfrom Exteral/sec Root VP 14 Hyper-V Virtul Switch Processor \\TKS-3WPOTRO12

~ — 10 Packets from External/sec Root VP 15 Hyper-V Virtul Switch Processor \\TKS-3WPOTRO12

~ — 10 Packetsfrom External/sec__Root VP 16 SETE R, N

image12.png
®

® File Action View Window Help

e 2@ E= Hm
Receive Queues

E
En
i
£ s
& o
Show Color Scle Counter nstance b.. Object
[w10 RecevePiocessor VMOT_Network Adapter Enry 9.CBDS1086-w. -~ yper-V Vil Network Adapier VRSS
[V w10 ReceveProcessor VMOI_Network Adapter Enfry 1 CBDSI0BG-v. - yper-V Viruel Network Adapter VRSS
[mmmm 10 ReceeProcessor VMOTNetwork Adapier Enty 2.CBDSI0BS-.. — yper-V Vituel Network Adapter VS
P T 10 ReceveProcessor VMOTNetwork Adapter Eny 3.CBDST0B5-.. — yper-V Vituel Network Adapter VRS
[w10 ReceveProcessor VMOTNetwork Adapter Enty £ CBDSI0BS-.. — Fyper-V Vituel Network Adapter VRSS
[w10 ReceveProcessor VMOTNetwork Adapter Eny_5.CBDSI0B5-.. — Fyper-V Vituel Network Adapter VRSS
[w10 ReceeProcessor VMOTNetwork Adapter Enty 6.CBDSI0BS-.. — yper-V Vituel Network Adapter VS
v - 10 ReceiveProcessor VMO1 Network Adapter Entry 7 CBD510B6-.. Hyper-V Virtual Network Adapter VRSS

image13.png
VMOT on TKS-3WPOTROS12

Virtual Machine Connection

Fle Action Media View Help
mo Ry B

o

PORT#: 51018

PORT#: 51037

PORT#: 51010

PORT#: 51013

PORT#: 51014

PORT#: 51016

PORT#: 51008

PORT#: 51046

Network activity progressing...

PORT#: 56027
PORT#: 56032
PORT#: 56051
PORT#: 56056
PORT#: 56008
PORT#: 56012
PORT#: 56021
PORT#: 56043
Network activity progressing...

5 Task Manager
File Options View

Processes Performance Users Details Services

Ethernet

Memory
2.0/4.0 GB (50%)

Ethernet
S: 436 Mbps R: 142 Gbps

Micr

Fewer details | (8 Open Resource Monitor

image14.png
© Fle Adion View Window Help

e amE=Hm

CPU Core
20000

§ 15000

£

£ 1000

E s

Show Color Scale Counter Instance P.. Object Computer

I — 10 Packets from Extermal/sec Root VP 12 Fiyper-V Virtual Switch Processor \\TKS-3WPOTROS12

~ — 10 Packets from External/sec Root VP 13 Hyper-V Virtul Switch Processor \\TKS-3WPOTRO12

~ — 10 Packetsfrom Exteral/sec Root VP 14 Hyper-V Virtul Switch Processor \\TKS-3WPOTRO12

~ — 10 Packets from External/sec Root VP 15 Hyper-V Virtu Switch Processor \\TKS-3WPOTRO12

~ — 10 Packetsfrom External/sec__Root VP 16 itusl Switch Processor _ \\TK5-3WPOTROS12

v

e i e e o2

~ S 10 Packets from External/sec Root VP 19 Hyper-V Virtu Switch Processor \\TKS-3WPOTRO12

image15.png
PS C:\vmswitchtest> Get-VMNetworkAdapter -VMName VM@l | Select VMName, MacAddress

VMName MacAddress

VM@l ©0155D519A00

image16.png
Name QueueID MacAddress VlanID Processor

Chl-40G-01 i ©0-07-43-2D-D6-D0 0:17
Chl-40G-01 2 ©0-15-5D-51-9A-00 0:17

image17.png
Intel(R) Xeon(R) CPU E5-2660 v3 @ 2.60GHz

CPU

5 ization mver 70 secands

oA i b

e | S

e | e,
N s

image18.png
VMOT on TKS-3WPOTROS12

Virtual Machine Connection

Fle Acion Media View Help
mo Ry B

o
PORT#: 51018
PORT#: 51037
PORT#: 51010
PORT#: 51013
PORT#: 51014
PORT#: 51016
PORT#: 51008
PORT#: 51046
Network activity progressing.

PORT#:
PORT#:
PORT#:
PORT#:
PORT#:
PORT#:
PORT#:
Network activity progressing...
ACTerminate batch job (Y/N)? y
vmswitchtest> _

Processes Performance

O cru
€% 260 Ghz

Memory
2.0/4.0 GB (50%)

Ethernet

Users Details Services

Ethernet

S: 9.1 Mbps R: 5.5 Gbps.

Fewer details

Open Resource Monitor

image19.png
Action
2z

Window

HIE= HmE

Help

Fle Action Media View Help

O)c] Ry L=l

Rev Packets/Sec

Show

R

CPU Core

5000

ol olmas

Color Scale
— 10
— 10
10
10
10
— 10
— 10

Counter
Packets from External/sec
Packets from External/sec
Packets from External/sec
Packets from External/sec
Packets from External/sec
Packets from External/sec.
Packets from External/sec
Packets from External/sec

Instance

Root VP 12 Hyper-V Virtual Switch Processor
Root VP 13 Hyper-V Virtual Switch Processor

Root VP 14 Hyper-V Virtual Switch Processor

Root VP 15 Hyper-V Virtual Switch Processor

Root VP 16 Hyper-V Virtual Switch Processor

Root VP17, Hyper-V Virtual Switch Processor \\TK5-3WPOTR0512
Root VP 18 Hyper-V Virtual Switch Processor \\TK5-3WPO7ROS'
Root VP 19 Hyper-V Virtual Switch Processor \\TK5-3WPO7ROS'

Object

Computer

51018
51037
51010

Processes Performance Users De

51013 O Naae
51014 "

Vemor
5le16 20/40 GE/{SD%J
51008

Ethernet

51046
S: 9.0 Mbps R: 5.3 Gbps.

56040
56018
56039
56060
56051

Action

2=

Window

LN 7o

Help

56041

56033
Network activity progressing.
ACTerminate batch job (Y/N)? y

CPU Core Processing Packets

Show

A RIRRRICR A

Receive Queues

H

i

o

Color Scale
10
— 10
— 10
10
10
— 10
10
10

Counter
ReceiveProcessor
ReceiveProcessor
ReceiveProcessor
ReceiveProcessor
ReceiveProcessor
ReceiveProcessor
ReceiveProcessor
ReceiveProcessor

Instance
'VMOT_Network Adapter_Entry_0_CBDS10B6

VMO1_Network Adapter_Entry_1_CBD510BE-,
VMO1 Network Adapter_Entry_2_CBD510BS-.
VMO1 Network Adapter_Entry_3_CBD510BS-.
VMO1 Network Adapter_Entry_4_ CBD510BS-.
VMO1 Network Adapter_Entry_5_CBD510BS-.
VMO1 Network Adapter_Entry_6_CBD510BS-.
VMO1 Network Adapter_Entry_7_CBD510BS-.

Object

Hyper-V Virtual Network Adapter VRS \\TK5-3WPO7R0512

Hyper-V Virtual Network Adapter VRSS
Hyper-V Virtual Network Adapter VRSS
Hyper-V Virtual Network Adapter VRSS
Hyper-V Virtual Network Adapter VRSS
Hyper-V Virtual Network Adapter VRSS
Hyper-V Virtual Network Adapter VRSS
Hyper-V Virtual Network Adapter VRSS

Computer

N
N
N
N
N
N
T

Fewer details | () Open Resou

PS C:\vmswitchtest> _

PS C:\vmswitchtest> _

image20.png
vMe1 Dynamic

PS C:\vmswitchtest>

image21.png
® File Action View Window Help =
e nmE= o

CPU Core
20000
§ 15000
£
£ 1000
E s
Show Color Counter Instance P.. Object Computer ~
I — Packets from Extermal/sec Root VP 12 Fiyper-V Virtual Switch Processor \\TKS-3WPOTROS12
~ — Packets from External/sec Root VP 13 Hyper-V Virtul Switch Processor \\TKS-3WPOTRO12
~ — Packetsfrom Exteral/sec Root VP 14 Hyper-V Virtul Switch Processor \\TKS-3WPOTRO12
~ — Packets from External/sec Root VP 15 Hyper-V Virtu Switch Processor \\TKS-3WPOTRO12
~ — Packetsfrom External/sec__Root VP 16 itusl Switch Processor _ \\TK5-3WPOTROS12
v
o —— Packs fomExarlsec oot P10 Fyer\ Vil amtch rocesor | \ K6 WPOTUSe
~ — Packets from External/sec Root VP 19 e Vi ot Proceser Tk 3WpOTROS12

image22.png
®

® Fie

s

Action View Window Help

| E =

| B =

CPU Core Processing Packets

Receive Queues

A RRRCRIAR A ¢

g

Counter
ReceiveProcessor
ReceiveProcessor
ReceiveProcessor
ReceiveProcessor
ReceiveProcessor
ReceiveProcessor
ReceiveProcessor
ReceiveProcessor

Instance
'VMOT_Network Adapter_Entry_0_ CBDS1086-...
'VMOT_Network Adapter_Entry_1_CBD510B6-

'VMOT_Network Adapter_Entry_2_ CBD510B6-
'VMOT_Network Adapter_Entry_3_ CBD510B6-
'VMOT_Network Adapter_Entry_4_ CBD510B6-
'VMOT_Network Adapter_Entry_5_CBD510B6-
'VMOT_Network Adapter_Entry_6_CBD510B6-
'VMOT_Network Adapter_Entry_7_CBD510B6-

Object
Fyper-V Virtual Network Adapter VRSS
Hyper-V Virtual Network Adapter VRSS
Hyper-V Virtual Network Adapter VRSS
Hyper-V Virtual Network Adapter VRSS
Hyper-V Virtual Network Adapter VRSS
Hyper-V Virtual Network Adapter VRSS
Hyper-V Virtual Network Adapter VRSS
Hyper-V Virtual Network Adapter VRSS

Computer
\\TK5-3WPOTRO512
\\TKS-3WPOTROS12
\WTKS-3WPOTROS12
\WTKS-3WPOTROS12
\WTKS-3WPOTROS12
\WTKS-3WPOTROS12
\WTKS-3WPOTROS12
\WTKS-3WPOTROS12

image23.png
Fle Acion Media View Help
mo Ry B

51018 ns Vi
51037 Processes Performance | Users | Deta
51010

O cpu
51013 7% 260 GHz
51014 e

Memor

51016 1\7,'4\75315 %)
51008
51046 Ethernet

S: 8.8 Mbps R: 5.3 Gbps.

Network activity progressing.

¥ Guest _ 0o x

image24.png
VMOT on TKS-3WPOTRO:

Virtual Machine Connection
Fle Acion Media View Help
mo Ry B

o

PORT#: 51018

PORT#: 51037

PORT#: 51010

PORT#: 51013

PORT#: 51014

PORT#: 51016

PORT#: 51008

PORT#: 51046

Network activity progressing...

PORT#: 56048
PORT#: 56047
PORT#: 56006
PORT#: 56053
PORT#: 56029
PORT#: 56036
PORT#: 56049
PORT#: 56026
Network activity progressing.

Processes Performance Users Details Services

O e Ethernet

Memory
2.0/4.0 GB (50%)

Ethernet
S: 188 Mbps R: 103 Gbps

18.8 Mbps

10.3 Gbps

<

Open Resource Monitor

image25.png
®

® File Action View Window Help

e nmE= o

CPU Core
20000

§ 15000

£

£ 1000

E s

Show Color Scale Counter Instance P.. Object Computer

I — 10 Packets from External/sec Root VP 12 Hyper-V Virtual Switch Processor \\TK5-3WPO7R0512

¥ — 10 Pacets from Exteral/sec Root VP13~~~ Hyper-V Virtual Switch Processor \\TK5-3WPOTRO12

¥ — 10 Pacets from bxteral/sec Root VP 14~~~ Hyper-V Virtual Switch Processor \\TK5-3WPOTRO12

¥ — 10 Packets from Exteral/sec Root VP15~~~ Hyper-V Virtual Switch Processor \\TK5-3WPOTRO12

v — 10 Pociets from External/sec__Root VP 16 _---_Hyper-V Virtual Swtch Processor __ \\TK5-3WPOTR0S12

v S5 10 Pocketsfrom Extemal/sec Root VP17 -~ Hyper-V Virusl Switch Processor \\TK5-3WPOTRO512

4 — 10 Packets from bxtemal/sec oot VP 18 -~ Hyper-V Virtual Switch Processor \\TK5-3WPO7ROS12

¥ — 10 Pockets from Exteral/sec Root VP19~~~ Hyper-V Virtual Switch Processor \\TK5-3WPOTROS12

image26.png
View Window Help

e amE= HmE

Receive Queues

CPU Core Processing Packets

H

VMO1_Network.
ReceiveProcessor VMO1_Network Adapter_Entry_1_CBD51086-.
ReceiveProcessor VMO1_Network Adapter_Entry_2 CBD51086-.

i Adapter_Entry_3_CBD51086-.

e ¢

P... Object Computer
CBDS1086-... -~ Hyper-V Virtual Network Adapter VRSS \TKS-3WPO7R0512
Hyper-V Virtual Network Adapter VRSS \\TK5-3WPO7R0512
Hyper-V Virtual Network Adapter VRSS \\TK5-3WPO7R0512
Hyper-V Virtual Network Adapter VRSS \\TK5-3WP07R0512

image27.png
®
® File Action View Window Help

e nm s Bm

Receive Queues

CPU Core Processing Packets

image28.png
VMOT on TKS-3WPO7R0S12 - Virtual Machine Connection
Fle Action Media View Help

mo Ry B

¥ Guest

PORT#: 51010

PORT#: 51013

PORT#: 51014

PORT#: 51016

PORT#: 51008

PORT#: 51046

Network activity progressing...
vmswitchtest>
vmswitchtest>

PS C:\vmswitchtest> _

PORT#: 56053

PORT#: 56029

PORT#: 56036

PORT#: 56049

PORT#: 56026

Network activity progressing...
ACTerminate batch job (Y/N)?

~C

PS vmswitchtest>

PS vmswitchtest>

Processes Performance Users Details

O cpu
0% 260 Ghz

Memory
2.0/4.0 GB (50%)

Ethernet
S: 0Kbps R: 8.0 Kbps

Servic

Ett

Fewer details | (8 Open Resource Monitor

image29.png
® File Action View Window Help
e 2@ E= Hm

CPU Core

20000
§ 15000
£
£ 1000
E s
Show Color Scale Counter Instance P.. Object Computer
I — 10 Packets from Extermal/sec Root VP12 - Hyper-V Vitual Switch Processor \\TK5-3WPO7ROS12
~ — 10 Packets from External/sec Root VP13 -~ Hyper-V Virtual Switch Processor \\TK5-3WPO7ROS12
~ — 10 Packets from Exteral/sec Root VP 14 - Hyper-V Virtual Switch Processor \\TK5-3WPO7ROS12
~ — 10 Packets from External/sec oot VP15 -~ Hyper-V Virtual Switch Processor \\TK5-3WPO7ROS12
~ — 10 Packetsfrom External/sec__Root VP 16 itusl Switch Processor _ \\TK5-3WPOTROS12
v
e i e e o2

I w10 Packetsfrom Eernal/sec RootVP19 - Hyper-V Virtual Switch Processor \\TKS-3WPO7R0S12

image30.png
®

® File Action View Window Help

e 2@ E= Hm

x

Receive Queues
g
< 15
o
§ s
5 o
Show Color Scale Counter Instance P.. Object Computer ~
v — 10 ReceiveProcessor VMO1_Network Adapter_Entry_0_CBDS10B6-... - Hyper-V Virtual Network Adapter VRSS \\TK5-3WPOTR0512
4 — 10 ReceiveProcessor VMOT_Network Adzpter_Entry_1_CBDST0BG-.. -~ Hyper-V Virtual Network Adapter VRSS \\TK5-3WPO7R0S12
I — 10 ReceiveProcessor VMOT_Network Adapter_Entry_2 CBDS10B6-... - Hyper-V Virtual Network Adapter VRSS \\TK5-3WPO7R0512

image31.png
Fle Acion Media View Help
mo Ry B

PORT#: 51047
PORT#: 51007
PORT#: 51@01
PORT#: 51021
PORT#: 51000
PORT#: 51006
PORT#: 51051
Network activity progressing.

PS C:\vmswitchtest>

5 Task Manager
File Options View

Processes Performance Users Details Services

Ethernet

Memory
2.0/4.0 GB (50%)

Ethernet
S: 226 Mbps R: 21.1 Gbps

22.6 Mbps

image32.png
®

® File Action View Window Help L

e 2@ E= Hm

CPU Core
20000
§ 15000
£
£ 1000
E s I
Show Color Scale Counter Instance P.. Object Computer S
I — 10 Packets from External/sec Root VP 12 Hyper-V Virtual Switch Processor \\TK5-3WPO7R0512
¥ — 10 Pacets from Exteral/sec Root VP13~~~ Hyper-V Virtual Switch Processor \\TK5-3WPOTRO12
¥ — 10 Pacets from bxteral/sec Root VP 14~~~ Hyper-V Virtual Switch Processor \\TK5-3WPOTRO12
¥ — 10 Packets from Exteral/sec Root VP15~~~ Hyper-V Virtual Switch Processor \\TK5-3WPOTRO12
v — 10 Pociets from External/sec__Root VP 16 _---_Hyper-V Virtual Swtch Processor __ \\TK5-3WPOTR0S12
v S5 10 Pocketsfrom Extemal/sec Root VP17 -~ Hyper-V Virusl Switch Processor \\TK5-3WPOTRO512
4 — 10 Packets from bxtemal/sec oot VP 18 -~ Hyper-V Virtual Switch Processor \\TK5-3WPO7ROS12
¥ — 10 Pockets from Exteral/sec Root VP19~~~ Hyper-V Virtual Switch Processor \\TK5-3WPOTROS12
® <
® File Action View Window Help _lslx

e 2@ E= Hm

Receive Queues

£

&

o

£ s

& o

ow Scale Counter Instance P.. Object Computer ~
10 ReceiveProcessor VMO1_Network Adapter_Entry_0_CBDS10B6-... - Hyper-V Virtual Network Adapter VRSS \TK5-3WPO7RO512
10 ReceieProcessor VMOI_Network Adapter Entry i CBDSI0BG-.. — Hyper-V Virtual Network Adapter VRSS \\TKS-3WPOTROS12
10 ReceieProcessor VMOI Network Adapter Entry 2 CBDSIO0BG-.. — Hyper-V Virtual Network Adapter VRSS \\TKS-3WPOTROS12

ReceiveProcessor VMO1_Network Adapter_Entry_3_CBD510B6-..
10 ReceiveProcessor VMO1_Network Adapter_Entry_4_ CBDS10B6-..
10 ReceiveProcessor VMO1_Network Adapter_Entry_5_CBD510B6-..
10 ReceiveProcessor VMO1_Network Adapter_Entry_6_CBD510B6-..
10 ReceiveProcessor VMO1_Network Adapter_Entry_7_CBDS10B6-..

Hyper-V Virtual Network Adapter VRS \\TK5-3WPO7R0512
Hyper-V Virtual Network Adapter VRS \\TK5-3WPO7R0512
Hyper-V Virtual Network Adapter VRS \\TK5-3WPO7RO0512
Hyper-V Virtual Network Adapter VRS \\TK5-3WPO7R0512
Hyper-V Virtual Network Adapter VRSS \TK5-3WPOTR0512 v

B

SRR

